OECD 487 Micronucleus Test using Primary Human Lymphocytes

The *in vitro* micronucleus assay is used to detect chemicals which induce the formation of small membrane-bound DNA fragments (micronuclei) in the cytoplasm of interphase cells.

Chromosomal damage is detected by the presence of micronuclei in the cytoplasm of interphase cells that originate from acentric fragments, or whole chromosomes that failed to segregate correctly during anaphase. This means the micronucleus test is sensitive to both clastogenic and aneugenic mechanisms of genotoxicity.

This cytogenetic test forms part of the standard test battery for genotoxicity as prescribed by the International Conference on Harmonization (ICH S2 (R1)) and is also designed to meet the requirements of the current international guidelines issued by the Organization for Economic Cooperation and Development (OECD; Test Guideline 487).

Assay Principles

Cell cultures of human lymphocytes are exposed to the test substance both with and without an exogenous source of metabolic activation (S9 fraction). Concurrent solvent/vehicle and positive controls are included in all tests. During exposure to the test substance, the cells are grown for a period sufficient to allow chromosome or spindle damage to lead to the formation of micronuclei in interphase cells. Harvested and stained cells are analysed for the presence of micronuclei. Micronuclei are only scored in those cells that have completed mitosis during exposure to the test substance. In this version of the assay cytokinesis is blocked using cytochalasin B and micronuclei are scored only in binuclear cells.

Cell preparation

Whole blood is drawn from young, healthy, non-smoking volunteers with no known recent exposures to genotoxic chemicals or radiation. Typically at least 2 donor samples are pooled for each assay. Lymphocyte cells are isolated using standard methods and are cultured in the presence of a mitogen for between 44 and 48 hours prior to exposure to the test substance.

Dosing

Cells are exposed to the test substance along with solvent/vehicle and positive controls. A preliminary dose range finding assay is set up to assess the toxicity of the test article. From the information provided by the initial test, up to five analyzable concentrations are evaluated, in duplicate, with the highest concentration aiming to produce 55 ±5% cytotoxicity.

Incubation

The assay is carried out both in the presence and absence of a rat-liver S9-mediated metabolic activation system. Typical treatment periods are outlined in Table 1.

Table 1: Cell treatment periods used in the micronucleus assay in human lymphocytes

<table>
<thead>
<tr>
<th>Culture Identity</th>
<th>S9</th>
<th>Culture Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✓</td>
<td>Treat for 3 h in the presence of S9; replace medium; add cytoB; harvest 1.5 – 2.0 normal cell cycles later.</td>
</tr>
<tr>
<td>2</td>
<td>✗</td>
<td>Treat for 3 h; replace medium; add cytoB; harvest 1.5 – 2.0 normal cell cycles later.</td>
</tr>
<tr>
<td>3</td>
<td>✗</td>
<td>Treat for 1.5 – 2.0 normal cell cycles in the presence of cytoB; harvest at the end of the exposure period.</td>
</tr>
</tbody>
</table>

Cell Harvesting

Following the treatment periods cells are washed, enumerated and adjusted to the same cell density. A thin monolayer of cells is produced on a glass slide which is then fixed and stained using a DNA specific stain to allow the straightforward detection of nuclear material.

Analysis

All slides are independently coded prior to analysis to ensure there is no operator bias. The cytokinesis-block proliferation index (CBPI) is determined to demonstrate cell proliferation using at least 500 cells per test substance concentration, vehicle and positive control. Micronucleus frequencies are analyzed in at least 2000 binuclear cells per culture.
Gentronix is an established biotechnology innovation and service company specialising in early screening and mechanistic follow-up for genotoxicity for a range of industries including: pharmaceuticals, chemicals, agrochemicals, personal care, consumer products, flavours, fragrances and taste enhancers, and medical devices. In addition to classical genotoxicity assays, Gentronix offers GreenScreen®HC and BlueScreen™HC which are novel, patented systems that, unlike earlier assays, detect all known classes of genotoxin.

In addition to early screening, Gentronix provides assays and advice on follow-up strategies for positive results and mechanism elucidation to help chemists modify compounds to eliminate genotoxicity early in product discovery and development thereby preventing late stage failure.

Data and Reporting
The test report generated includes all of the information required by OECD Guideline 487. Individual culture data are provided and all data are summarized in tabular form. There are several criteria for the determination of a positive result such as a concentration-related increase of a statistically significant increase in the number of cells containing micronuclei. In addition, the biological relevance of the results is evaluated by comparing the test data to the appropriate historical control ranges.

Test Article Requirement
Typically we request 100 mg of test article for use in the micronucleus assay.

